Example of usage with PyTorch Lightning
This section provides an example of how to use Prov4ML with PyTorch Lightning.
In any lightning module the calls to train_step
, validation_step
, and test_step
can be overridden to log the necessary information.
Example:
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.loss(y_hat, y)
prov4ml.log_metric("MSE_train", loss, prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.log_flops_per_batch("train_flops", self, batch, prov4ml.Context.TRAINING,step=self.current_epoch)
return loss
This will log the mean squared error and the number of flops per batch for each the training step.
Alternatively, the on_train_epoch_end
method can be overridden to log information at the end of each epoch.
Example:
import lightning as L
from lightning.pytorch import LightningModule
import torch
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, Subset
import prov4ml
PATH_DATASETS = "./data"
BATCH_SIZE = 64
EPOCHS = 2
class MNISTModel(LightningModule):
def __init__(self):
super().__init__()
self.model = torch.nn.Sequential(
torch.nn.Linear(28 * 28, 10),
)
def forward(self, x):
return self.model(x.view(x.size(0), -1))
def training_step(self, batch, _):
x, y = batch
loss = F.cross_entropy(self(x), y)
# Log the training loss through the ProvMLLogger automatically
# In this case the Context parameter is lost.
# To be able to log also the context and step,
# use the standard prov4ml.log_metric() call
self.log("MSE_train", loss.item(), on_step=True, on_epoch=False, prog_bar=True, sync_dist=True)
return loss
def validation_step(self, batch, _):
x, y = batch
loss = F.cross_entropy(self(x), y)
# Log the validation loss through the ProvMLLogger automatically
self.log("MSE_val", loss)
return loss
def test_step(self, batch, _):
x, y = batch
loss = F.cross_entropy(self(x), y)
# Log the testing loss through the ProvMLLogger automatically
self.log("MSE_test",loss)
return loss
def on_train_epoch_end(self) -> None:
# All standard prov4ml directives work the same way as before,
# the whole context is set up by the logger.
prov4ml.log_metric("epoch", self.current_epoch, prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.save_model_version(self, f"model_version_{self.current_epoch}", prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.log_system_metrics(prov4ml.Context.TRAINING,step=self.current_epoch)
prov4ml.log_carbon_metrics(prov4ml.Context.TRAINING,step=self.current_epoch)
prov4ml.log_current_execution_time("train_epoch_time", prov4ml.Context.TRAINING, self.current_epoch)
def configure_optimizers(self):
optim = torch.optim.Adam(self.parameters(), lr=0.0002)
prov4ml.log_param("optimizer", optim)
return optim
mnist_model = MNISTModel()
tform = transforms.Compose([
transforms.RandomRotation(10),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor()
])
# Log the dataset transformation as one-time parameter
# This works even when not calling start_run(),
# as long as a ProvMLLogger is added to the training
prov4ml.log_param("dataset_transformation", tform)
train_ds = MNIST(PATH_DATASETS, train=True, download=True, transform=tform)
val_ds = Subset(train_ds, range(BATCH_SIZE * 1))
train_ds = Subset(train_ds, range(BATCH_SIZE * 10))
train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE)
val_loader = DataLoader(val_ds, batch_size=BATCH_SIZE)
prov4ml.log_dataset(train_loader, "train_dataset")
prov4ml.log_dataset(val_loader, "val_dataset")
trainer = L.Trainer(
accelerator="mps",
devices=1,
max_epochs=EPOCHS,
# The logger has to be added to the corresponding parameter in pytorch lightning
logger=[prov4ml.ProvMLLogger()],
enable_checkpointing=False,
log_every_n_steps=1
)
trainer.fit(mnist_model, train_loader, val_dataloaders=val_loader)
prov4ml.log_model(mnist_model, "model_version_final")
test_ds = MNIST(PATH_DATASETS, train=False, download=True, transform=tform)
test_ds = Subset(test_ds, range(BATCH_SIZE * 2))
test_loader = DataLoader(test_ds, batch_size=BATCH_SIZE)
prov4ml.log_dataset(test_loader, "test_dataset")
result = trainer.test(mnist_model, test_loader)
Example of usage with PyTorch Lightning Logger
When integrating with lightning, a much easier way to produce the provenance graph is through the ProvMLLogger.
Example:
trainer = L.Trainer(
accelerator="cuda",
devices=1,
max_epochs=EPOCHS,
enable_checkpointing=False,
log_every_n_steps=1,
logger=[prov4ml.ProvMLLogger()],
)
When logging in such a way, there is no need to call the start_run and end_run directives, and everything will be logged automatically. If necessary, it's still possible to call all yprov4ml directives, such as log_param and log_metrics, and the data will be saved in the current execution directory.