Example of usage with PyTorch Lightning
This section provides an example of how to use Prov4ML with PyTorch Lightning.
In any lightning module the calls to train_step
, validation_step
, and test_step
can be overridden to log the necessary information.
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.loss(y_hat, y)
prov4ml.log_metric("MSE_train", loss, prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.log_flops_per_batch("train_flops", self, batch, prov4ml.Context.TRAINING,step=self.current_epoch)
return loss
This will log the mean squared error and the number of flops per batch for each the training step.
Alternatively, the on_train_epoch_end
method can be overridden to log information at the end of each epoch.
def on_train_epoch_end(self) -> None:
prov4ml.log_metric("epoch", self.current_epoch, prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.save_model_version(self, f"model_version_{self.current_epoch}", prov4ml.Context.TRAINING, step=self.current_epoch)
prov4ml.log_system_metrics(prov4ml.Context.TRAINING,step=self.current_epoch)
prov4ml.log_carbon_metrics(prov4ml.Context.TRAINING,step=self.current_epoch)
prov4ml.log_current_execution_time("train_epoch_time", prov4ml.Context.TRAINING, self.current_epoch)